Publications:

Characterization of a glycolipid synthase producing α-galactosylceramide in Bacteroides fragilis.
M. Caballé, M. Faijes, A. Planas.
International Journal of Molecular Sciences 23, 13975 (2022). https://doi.org/10.3390/ijms232213975

Abstract

Glycolipids are complex molecules involved in important cellular processes. Among them, the glycosphingolipid α-galactosylceramide has proven to be of interest in biomedicine for its immunostimulatory capabilities. Given its structural requirements, the use of ceramide glycosyl-transferase enzymes capable of synthesizing this molecule under in vivo or in vitro conditions is a potential production strategy. Several GT4 enzymes from Bacteroides fragilis were considered as potential candidates in addition to the known BF9343_3149, but only this one showed glycolipid synthase activity. The enzyme was expressed as a SUMO fusion protein to produce soluble pro-tein. It is a non-processive glycosyltransferase that prefers UDP-Gal over UDP-Glc as a donor substrate, and maximum activity was found at pH 7.3 and around 30–35 °C. It does not require metal cations for activity as other GT4 enzymes, but Zn2+ inactivates the enzyme. The reaction occurs when the ceramide lipid acceptor is solubilized with BSA (100% conversion) but not when it is presented in mixed micelles, and anionic lipids do not increase activity, as in other membrane-associated glycolipid synthases. Further protein engineering to increase stability and activity can make feasible the enzymatic synthesis of α-GalCer for biomedical applications.