2025

A Practical guide to computational tools for engineering biocatalytic properties.
A. Vega, A. Planas, X. Biarnés.
International Journal of Molecular Sciences. Abstract.
https://doi.org/10.1016/j.ijpharm.2024.124921

MoCloro: an extension of the Chlamydomonas reinhardtii modular cloning toolkit for microalgal chloroplast engineering.
X. Melero-Cobo, M. Gallemí, M. Carnicer, E. Monte, A. Planas, P. Leivar.
Physiologia Plantarum. Abstract. https://doi.org/10.1016/j.ijpharm.2024.124921

2024

Enhanced quantification and cell tracking of dual fluorescent labeled extracellular vesicles.
MJ Sánchez, P Leivar, S Borrós, C Fornaguera, M Lecina.
International Journal of Pharmaceutics 667, 124921. Abstract. https://doi.org/10.1016/j.ijpharm.2024.124921

Expanding the chitin oligosaccharide portfolio by engineering NodC chitin synthases in Escherichia coli.
C. Guidi, X. Biarnés, A. Planas, M. De Mey.
Current Research in Biotechnology 8, 100255 (2024). Abstract. https://doi.org/10.1016/j.crbiot.2024.100255

Formation of a covalent adduct in retaining β-Kdo glycosyl-transferase WbbB via substrate-mediated proton relay.
M. Sagiroglugil, Q. Liau, A. Planas, C. Rovira.
ChemCatChem 2024, e202400769 (2024). Abstract. https://doi.org/10.1002/cctc.202400769

Three-step enzymatic remodeling of waste chitin into bioactive chitooligomers.
Z. Mészáros, N. Kulika, L. Petrásková, P. Bojarová, M. Texidó, A. Planas, V. Křen, K. Slámová.
Journal of Agricultural and Food Chemistry 72, 15613−15623 (2024). Abstract. https://doi.org/10.1021/acs.jafc.4c03077

PIF transcriptional regulators are required for rhythmic stomatal movements.
A. Rovira, N. Veciana, A. Basté-Miquel, M. Quevedo, A. Locascio, L. Yenush, G. Toledo-Ortiz, P. Leivar, E. Monte.
Nature Communications 15, 4540 (2024). Abstract. https://doi.org/10.1038/s41467-024-48669-4

Engineering of a chitin deacetylase to generate tailor-made chitosan polymers.
M. Bonin, A.L. Irion, A. Jürß, S. Pascual, S. Cord-Landwehr, A. Planas A, B.M. Moerschbacher .
PLoS Biol 22: e3002459 (2024). Abstract. https://doi.org/10.1371/journal.pbio.3002459

Comparison of two peroxidases with high potential for biotechnology applications – HRP vs. APEX2.
S. Skulj, M. Kozic, A. Barisic, A. Vega, X. Biarnés, I. Piantanida, I. Barisic, B. Bertos.
Computational and Structural Biotechnology Journal 23, 742–751 (2023). Abstract. https://doi.org/10.1016/j.csbj.2024.01.001

2023

“Automated Glycan Assembly Enables the Glycoscience” lecture by Dr. Peter Seeberger at IQS.
A.Planas.
Afinidad 80 (600), 113-115 (2023) – Editorial. https://doi.org/10.55815/422412

Control of substrate conformation by hydrogen bonding in a retaining β-endoglycosidase.
A. Nin-Hill, A. Ardevol, X. Biarnés, A.Planas, C. Rovira.
Chemistry. A European Journal 29, e202302555 (2023). Abstract. https://doi.org/10.1002/chem.202302555 

Transthyretin has conformation-selective proteolytic activity against α-synuclein.
Z. Sárkány, T. Gião, M. Almeida Liz, A. Planas, S. Macedo-Ribeiro, I. Cardoso, G. Arsequell, P. M. Martins.
BioRxif (2023). Abstract. https://doi.org/10.1101/2023.08.10.552896

Novel α-mannose-functionalized poly (β-amino ester) nanoparticles as mRNA vaccines with increased antigen presenting cells selectivity in the spleen
N. González-Ríosa, M. Artigues, M. Guerra-Rebollo, A. Planas, S. Borrós, M. Faijes, C. Fornaguera.
Journal of Materials Chemistry B. 11, 6412-6427 (2023). Abstract. https://pubs.rsc.org/en/content/articlehtml/2023/tb/d3tb00607g

Glycoside hydrolases: Mechanisms, specificities, and engineering
A. Planas.
In Glycoside Hydrolases. Biochemistry, Biophysics, and Biotechnology (A. Goyal K. Sharma, Eds) pp. 25-53 (2023). Academic Press, Elsevier. ISBN 978-0-323-91805-3 (book chapter).Abstract. https://doi.org/10.1016/B978-0-323-91805-3.00011-3

Chloroplast engineering of the green microalgae Chlamydomonas reinhardtii for the production of HAA, the lipid moiety of rhamnolipid biosurfactants.
B. Miró-Vinyals, M. Artigues, K. Wostrikoff, E. Monte, F. Broto-Puig, P. Leivar, A. Planas.
New Biotechnology 76, 1-12 (2023). Abstract. https://doi.org/10.1016/j.nbt.2023.03.005

Developing a single-stage continuous process strategy for vitamin B12 production with Propionibacterium freudenreichii.
A. Calvillo, T. Pellicer, M. Carnicer, A. Planas.
Microbial Cell Factories 22, 26 (2023). Abstract. https://doi.org/10.1186/s12934-023-02029-x

Controlled processivity in glycosyltransferases: a way to expand the enzymatic toolbox.
C. Guidi, X. Biarnés, A. Planas, M. de Mey.
Biotechnology Advances 63, 108081 (2023). Abstract. https://doi.org/10.1016/j.biotechadv.2022.108081

Binding of common organic UV-filters to the thyroid hormone transport protein transthyretin using in vitro and in silico studies: Potential implications in health.
E.Y. Cotrina, Â. Oliveira, J. Llop, J. Quintana, X. Biarnés, I. Cardoso, M.S. Díaz-Cruz, G. Arsequell.
Environmental Research 217, 114836 (2023). Abstract. https://doi.org/10.1016/j.envres.2022.114836

2022

Characterization of a glycolipid synthase producing α-galactosylceramide in Bacteroides fragilis.
M. Caballé, M. Faijes, A. Planas.
International Journal of Molecular Sciences 23, 13975 (2022). Abstract. https://doi.org/10.3390/ijms232213975

Bioprocess strategies for vitamin B12 production by microbial fermentation and its market applications.
A. Calvillo, T. Pellicer, M. Carnicer, A. Planas.
Bioengineering 9, 365 (2022). Abstract. http://doi.org/10.3390/bioengineering90803654-z

1, 2, 3-Triazole Derivatives as Novel Antifibrinolytic Drugs.
O. Bosch-Sanz, Y. Rabadà, X. Biarnés, J. Pedreño, L. Caveda, M. Balcells, J. Martorell, D. Sánchez-García.
International Journal of Molecular Sciences 23, 14942 (2022). Abstract. https://doi.org/10.3390/ijms232314942

Integrative Structure Determination Reveals Functional Global Flexibility for an Ultra-modular Arabinanase.
S. Lansky, R. Salama, X. Biarnés, O. Shwartshtien, D. Schneidman-Duhovny, A. Planas, Y. Shoham, G. Shoham.
Communications Biology 5, 465 (2022). Abstract. https://doi.org/10.1038/s42003-022-03054-z

Enzymatic Hydrolysis of Human Milk Oligosaccharides. The Molecular Mechanism of Bifidobacterium bifidum Lacto-N-biosidase.
I. Cuxart, J. Coines, O. Esquivias, M. Faijes, A. Planas, X. Biarnés, C. Rovira.
ACS Catalysis 12, 4737–4743 (2022). Abstract. https://doi.org/10.1021/acscatal.2c00309

Peptidoglycan Deacetylases in Bacterial Cell Wall Remodeling and Pathogenesis.
A. Planas.
Current Medicinal Chemistry 29, 1293 – 1312 (2022). Abstract. https://doi.org/10.2174/0929867328666210915113723

BBX16 mediates the repression of seedling photomorphogenesis downstream of the GUN1/GLK1 module during retrograde signalling.
N. Veciana, G. Martín, P. Leivar, E. Monte.
New Phytologist 234, 93–106 (2022). Abstract. http://doi.org/10.1111/nph.17975

2021

Targeting transthyretin in Alzheimer’s disease: drug discovery of small-molecule chaperones as disease-modifying drug candidates for Alzheimer’s disease.
E.Y. Cotrina, L. Miguel Santos, J. Rivas, D. Blasi, J.P. Leite, M.A. Liz, M. A. Busquets, A. Planas, R. Prohens, A. Gimeno, J. Jiménez-Barbero, L. Gales, J. Llop, J. Quintana, I. Cardoso, G. Arsequell.
European Journal of Medicinal Chemistry 226, 113847 (2021). Abstract.    https://doi.org/10.1016/j.ejmech.2021.113847

Indolyl Septanoside Synthesis for In Vivo Screening of Bacterial Septanoside Hydrolases.
A.R. Pote, S. Pascual, A. Planas, M.W. Peczuh.
International Journal of Molecular Sciences 22, 4497 (2021). Abstract. https://doi.org/10.3390/ijms22094497

Transglycosylation activity of engineered Bifidobacterium lacto-N-biosidase mutants at donor subsites for lacto-N-tetraose synthesis.
M. Castejón-Vilatersana, M. Faijes, A. Planas.
International Journal of Molecular Sciences 22, 3230 (2021). Abstract. https://doi.org/10.3390/ijms22063230

Carbohydrate de-N-acetylases acting on structural polysaccharides and glycoconjugates.
S. Pascual, A Planas.
Current Opinion in Chemical Biology 61, 9–18 (2021). Abstract. https://doi.org/10.1016/j.cbpa.2020.09.003

Auxiliary active site mutations enhance the glycosynthase activity of a GH18 chitinase for polymerization of chitooligosaccharides.
C. Alsina, E. Sancho-Vaello, A. Aranda-Martínez, M. Faijes, A. Planas.
Carbohydrate Polymers 252, 117121 (2021). Abstract. https://doi.org/10.1016/j.carbpol.2020.117121

The sequential action of MIDA9/PP2C.D1, PP2C.D2, and PP2C.D5 is necessary to form and maintain the hook after germination in the dark.
A. Rovira, M. Sentandreu, A. Nagatani, P. Leivar, E. Monte.
Frontiers in Plant Science 12, 636098 (2021). Abstract. https://doi.org/10.3389/fpls.2021.636098

2020

Preparative Scale Production of Recombinant Human Transthyretin for Biophysical Studies of Protein-Ligand and Protein-Protein Interactions. 
E.Y. Cotrina, M. Vilà, J. Nieto, G.Arsequell, A. Planas.
International Journal of Molecular Sciences  21, 9640  (2020). Abstract. https://doi.org/10.3390/ijms21249640

Optimization of Kinetic Stabilizers of Tetrameric Transthyretin: A Prospective Ligand Efficiency guided Approach.
E.Y. Cotrina, D. Blasi, M. Vilà, A. Planas, C. Abad-Zapatero, N.B. Centeno, J. Quintana, G. Arsequell.
Bioorganic and Medicinal Chemistry 28, 115794 (2020). Abstract. http://doi.org/10.1016/j.bmc.2020.115794 

Plasmodium falciparum apicomplexan-specific glucosamine-6-phosphate N-acetyltransferase is key for amino sugar metabolism and asexual blood stage development.
J.Chi, M. Cova, M. de las Rivas, A. Medina., R. Junqueira Borges, P. Leivar, A. Planas, I. Usón, R. Hurtado-Guerrero, L. Izquierdo.
mBio 11:e02045-20 (2020). Abstract. https://doi.org/10.1128/mBio.02045-20

Metabolic engineering for glycoglycerolipids production in E. coli: tuning phosphatidic acid and UDP-glucose pathways.
N. Orive-Milla, T. Demulle, M. de Mey, M. Faijes, A Planas.
Metabolic Engineering 61, 106-119 (2020). Abstract. https://doi.org/10.1016/j.ymben.2020.05.010

Phytochrome-imposed inhibition of PIF7 activity shapes photoperiodic growth in Arabidopsis together with PIF1, 3, 4 and 5.
P. Leivar, G. Martín, J. Soy, J. Dalton-Roesler, P.H. Quail, E. Monte.
Physiologia Plantarum 169, 452-466 (2020). Abstract. https://doi.org/10.1111/ppl.13123

Central clock components modulate plant shade avoidance by directly repressing transcriptional activation activity of PIF proteins.
Y. Zhang, A. Pfeiffer, J.M. Tepperman, J. Dalton-Roesler, P. Leivar, E. Gonzalez-Grandio, P.H. Quail.
Proceedings of the National Academy of Sciences of the United States of America 117, 3261-3269 (2020). Abstract. https://doi.org/10.1073/pnas.1918317117

Charting the metabolic landscape of the facultative methylotroph Bacillus methanolicus.
B. Delépine, M.G. López, M. Carnicer, C. Vicente, V. Wendisch, S. Heux,
mSystems 5, e00745-20 (2020). Abstract. https://doi.org/10.1101/858514

2019

Structure-function relationships underlying the dual N-acetylmuramic and N-acetylglucosamine specificities of the peptidoglycan deacetylase PdaC from Bacillus subtilis.
L. Grifoll-Romero, M.A. Sainz-Polo, D. Albesa-Jové, M.E. Guerin, X. Biarnés, A. Planas.
Journal of Biological Chemistry 294, 19066-80 (2019). Abstract.  https://doi.org/10.1074/jbc.RA119.009510

Glycosynthase-type GH18 mutant chitinases at the assisting catalytic residue for polymerization of chitooligosaccharides.
C. Alsina, M. Faijes, A. Planas.
Carbohydrate Research 478, 1-9 (2019). Abstract. https://doi.org/10.1016/j.carres.2019.04.001

Enzymatic and cell factory approaches to the production of human milk oligosaccharides.
M. Faijes, M. Castejón, C. Val-Cid, A. Planas.
Biotechnology Advances 37, 667–697 (2019). Abstract. https://doi.org/10.1016/j.biotechadv.2019.03.014

Essential mycoplasma glycolipid synthase adheres to the cell membrane by means of an amphipathic helix.
J. Romero-García, X. Biarnés, A. Planas.
Scientific Reports 9, 7085 (2019). Abstract. https://doi.org/10.1038/s41598-019-42970-9

2018

Oxazoline or oxazolinium ion? The protonation state and conformation of the reaction intermediate of chitinase enzymes revisited.
J. Coines, M. Alfonso-Prieto, X. Biarnés, A. Planas, C. Rovira.
Chemistry A European Journal 24, 19258-19265 (2018). Abstract. http://dx.doi.org/10.1002/chem.201803905

Screening assay for directed evolution of chitin deacetylases. application to Vibrio cholerae deacetylase mutant libraries for engineered specificity.
S. Pascual, A. Planas.
Analytical Chemistry 90, 10654–10658 (2018). Abstract. http://dx.doi.org/10.1021/acs.analchem.8b02729

Engineering GH18 chitinases for the production of sequence-defined chitosan polymers.
C. Alsina, A. Aranda-Martínez, E. Sancho-Vaello, X. Biarnés, M. Faijes, A. Planas.
Revista de la Societat Catalana de Química 17, 32-44 (2018). Abstract. http://dx.doi.org/10.2436/20.2003.01.94

Chitin deacetylases: structures, specificities, and biotech applications.
L. Grifoll, S. Pascual, H. Aragunde, X. Biarnés, A. Planas.
Polymers 10, 352 (2018). Abstract. https://doi.org/10.3390/polym10040352

Substrate recognition and specificity of chitin deacetylases and related family 4 carbohydrate esterases.
H. Aragunde, X.Biarnés, A.Planas.
International Journal of Molecular Sciences 19, 412 (2018). Abstract. http://dx.doi.org/10.3390/ijms19020412

Expression and specificity of a chitin deacetylase from the nematophagous fungus Pochonia chlamydosporia potentially involved in pathogenicity.
A. Aranda-Martinez, L. Grifoll-Romero, H.Aragunde, E. Sancho-Vaello, X. Biarnés, L. Vicente Lopez-Llorca, A. Planas.
Scientific Reports 8, 2170 (2018). Abstract. http://dx.doi.org/10.1038/s41598-018-19902-0

Circadian Waves of Transcriptional Repression Shape PIF-Regulated Photoperiod-Responsive Growth in Arabidopsis.
G. Martín, A. Rovira, N. Veciana, J. Soy, G. Toledo-Ortiz, C.M.M. Gommers, M. Boix, R. Henriques, E.G. Minguet, D. Alabadí, K.J. Halliday, P. Leivar, E. Monte.
Current Biology 28, 311-318.e5 (2018). Abstract. https://doi.org/10.1016/j.cub.2017.12.021

Engineering of Escherichia coli for Krebs cycle ‑ dependent production of malic acid.
D. Trichez, C. Auriol, A. Baylac, R. Irague, C. Dressaire, , M. Carnicer, S. Heux, J.M. François, T. Walther.
Microbial Cell Factories 17, 113. (2018). Abstract. https://doi.org/10.1186/s12934-018-0959-y

2017

Structural Snapshots and Loop Dynamics Along the Catalytic Cycle of Glycosyltransferase GpgS.
D. Albesa-Jové, J. Romero-García, E. Sancho-Vaello, F.X. Contreras, A. Rodrigo-Unzueta, N. Comino, A. Carreras-González, P. Arrasate, S. Urresti, X. Biarnés, A. Planas, M.E. Guerin.
Structure 25, 1034-1044 (2017). Abstract. http://dx.doi.org/10.1016/j.str.2017.05.009

Rational design of a thermostable glycoside hydrolase from family 3 introduces β-glycosynthase activity.
T. Pozzo, J. Romero-García, M. Faijes, A. Planas, E. Nordberg-Karlsson.
Glycobiology 27, 165-175 (2017). Abstract. http://dx.doi.org/10.1093/glycob/cww081

Predicting Amino Acid Substitution Probabilities using Single Nucleotide Polymorphisms.
F. Rizzato, A. Rodriguez, X. Biarnés, A. Laio.
Genetics 207, 643–652 (2017). Abstract. https://doi.org/10.1534/genetics.117.300078

2016

A single point mutation alters the hydrolysis/transglycosylation partition, significantly enhancing the synthetic capability of an endo-glycoceramidase.
J. Durand, X..Biarnés, L. Watterlot, C. Bonzom, V. Borsenberger, A. Planas, S. Bozonnet, M.J. O’Donohue, R. Fauré.
ACS Catalysis 6, 8264–8275 (2016). Abstract. http://dx.doi.org/10.1021/acscatal.6b02159

Functionalized celluloses with regular substitution pattern by glycosynthase-catalyzed polymerization.
V. Codera, K.J. Edgar, M. Faijes, A. Planas.
Biomacromolecules, 17(4),1272-9 (2016). Abstract. http://dx.doi.org/10.1021/acs.biomac.5b01453

Stereoselective production of (R)-3-quinuclidinol using recombinant Escherichia coli whole cells overexpressing 3-quinuclidinone reductase and a cofactor regeneration system.
T. Pellicer, F. Marquillas, X. Pérez Javierre, A. Planas.
Practical Methods for Biocatalysis and Biotransformations, Volume 3. (J. Whittal, P.W. Sutton, W. Kroutil, Eds.). 273, 2016, Wiley. ISBN: 978-1-118-60525-7. Abstract. Link

Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network.
G. Martín, P. Leivar, D. Ludevid, J.M. Tepperman, P.H. Quail, E. Monte.
Nature Communications 7, 11431 (2016). Abstract. https://doi.org/10.1038/ncomms11431

Molecular convergence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters.
J. Soy, P. Leivar, N. González-Schain, G. Martín, C. Diaz, M. Sentandreu, B. Al-Sady, P.H. Quail, E. Monte.
Proceedings of the National Academy of Sciences of the United States of America 113, 4870-4875 (2016). Abstract. https://doi.org/10.1073/pnas.1603745113

Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus.
M. Carnicer, G. Vieira, T. Brautaset, J.-C. Portais, S.Heux.
Microbial Cell Factories 15, 92 (2016). Abstract. https://doi.org/10.1186/s12934-016-0483-x

2015

Quantitative analysis of post-translational modifications in human serum transthyretin associated with familial amyloidotic polyneuropathy by targeted LC-MS and intact protein MS.
M. Vilà-Rico M, N. Colomé-Calls, L. Martín-Castel, M. Gay M, S. Azorín, M. Vilaseca, A. Planas, F. Canals.
Journal of Proteomics 127(Pt B), 234-46 (2015). Abstract. http://dx.doi.org/10.1016/j.jprot.2015.04.016

A natural ternary complex trapped in crystal reveals the catalytic mechanism of a retaining glycosyltransferase.
D. Albesa-Jové, M.F. Mendoza, A. Rodrigo-Unzueta, F. Gomollón Bel, J. Cifuente, S. Urresti, N. Comino, H. Gómez, J..Romero-García, J.M. Lluch, E. Sancho-Vaello, X. Biarnés, A. Planas, P. Merino, L. Masgrau, M.E. Guerin.
Angewandte Chemie Int. Ed. 54, 9898-9902 (2015). Abstract. http://dx.doi.org/10.1002/anie.201504617

Carbohydrate Binding Module assisting glycosynthase-catalyzed polymerizations.
V. Codera, H. J. Gilbert, M. Faijes, A.Planas.
Biochemical Journal 470, 15-22 (2015). Abstract. http://dx.doi.org/10.1042/BJ20150420

When enzymes do it better: enzymatic glycosylation methods.
A. Planas, M. Faijes, V. Codera.
Carbohydrates Chemistry: State-of-the-art and challenges for drug development (L. Cipolla, Ed.), Imperial College Press, London, July 2015, pp.215-245. ISBN: 9781783267194. Abstract. Link

Molecular Design of Non-Leloir Furanose-Transferring Enzymes from an α-L-Arabinofuranosidase: A Rationale for the Engineering of Evolved Transglycosylases.
B. Bissaro, J. Durand, X.Biarnés., A. Planas, P. Monsan, R. Fauré, M. J. O’Donohue.
ACS Catalysis 5, 4598-4611 (2015). Abstract. http://dx.doi.org/10.1021/acscatal.5b00949

Structural-functional analysis reveals a specific domain organization in family GH20 hexosaminidases.
C. Val-Cid, X. Biarnés, M. Faijes, A. Planas.
PLOS One 10(5): e0128075 (2015). Abstract. http://dx.doi.org/10.1371/journal.pone.0128075

Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases.
S.N. Hamer, S. Cord-Landwehr, X. Biarnés, A. Planas, H. Waegeman, B.M. Moerschbacher, S. Kolkenbrock.
Scientific Reports 5, article 8716 (2015). Abstract. http://dx.doi.org/10.1038/srep08716

Tuning Transthyretin amyloidosis inhibition properties of iododiflunisal by combinatorial engineering of the nonsalicylic ring substitutions.
M. Vilaró, J. Nieto, J.R. La Parra, M.R. Almeida, A. Ballesteros, A. Planas, G. Arsequell, G. Valencia.
ACS Combinatorial Science 17, 32-8 (2015). Abstract. http://dx.doi.org/10.1021/co5001234

Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
L. Leβmeier, J. Pfeifenschneider, M. Carnicer, S. Heux, J.C. Portais, V.F. Wendisch.
Applied Microbiology and Biotechnology 99, 10163–10176. (2015). Abstract. https://doi.org/10.1007/s00253-015-6906-5

2014

Two-component systems of Mycobacterium tuberculosis as potential targets for drug development.
M. Marszalek, A. Planas, T. Pellicer.
Afinidad 71(567), 172-178 (2014). Link

Glycosynthases from Thermotoga neapolitana 1 β-glucosidase 1A: A comparison of α-glucosyl fluoride and in situ-generated α-glycosyl formate donors.
T. Pozzo, M. Plaza, J. Romero-García, M. Faijes, E. Nordberg Karlsson, A. Planas.
Journal of Molecular Catalysis B Enzymatic 107, 132-139 (2014). http://dx.doi.org/10.1016/j.molcatb.2014.05.021

Structural basis of chitin oligosaccharide deacetylation.
E. Andrés, D. Albesa-Jové, X. Biarnés, B. M. Moerschbacher, M. E. Guerin, A. Planas.
Angewandte Chemie Int. Ed. 53, 6882-6887 (2014). http://dx.doi.org/10.1002/anie.201400220

A transitional hydrolase to glycosynthase mutant by Glu to Asp substitution at the catalytic nucleophile in a retaining glycosidase.
H. Aragunde, E. Castilla, X. Biarnés, M. Faijes, A. Planas.
Carbohydrate Research 389, 85-92 (2014). http://dx.doi.org/10.1016/j.carres.2014.02.003

Rapid monitoring of glycerol in fermentation growth media: Facilitating crude glycerol bioprocess development.
S Abad, X Pérez, A Planas, X Turon.
Talanta 121, 210-214 (2014). http://dx.doi.org/10.1016/j.talanta.2013.12.022

Screening glycosynthase libraries with a fluoride chemosensor assay independent of enzyme specificity. Identification of a transitional hydrolase to synthase mutant.
E. Andrés, H. Aragunde, A.Planas.
Biochemical Journal 458, 355-363 (2014). http://dx.doi.org/10.1042/BJ20131057

TTR Aggregate Specific Antibodies Recognize Cryptic Epitopes on Patient-Derived Amyloid Fibrils.
M. Phay, V. Blinder, S. Macy, M.J. Greene, D.C. Wooliver, W. Liu, A. Planas, D.M. Walsh, L.H. Connors, S.R. Primmer, S.A. Planque, S. Paul, B. O’Nuallain.
Rejuvenation Research 17, 97-104 (2014). http://dx.doi.org/10.1089/rej.2013.1524

Structural determinants in prion protein folding and stability.
F. Benetti, X. Biarnés, F. Attanasio, G. Giachin, E. Rizzarelli, G. Legname.
Journal of Molecular Biology 426, 3796–3810 (2014). https://doi.org/10.1016/j.jmb.2014.09.017

Next generation sequencing in nonsyndromic intellectual disability: From a negative molecular karyotype to a possible causative mutation detection.
E. Athanasakis, D. Licastro, F. Faletra, A. Fabretto, S. Dipresa, D. Vozzi, A. Morgan, A.P. d’Adamo, V. Pecile, X. Biarnés, P. Gasparini.
American Journal of Medical Genetics Part A 164, 170-176 (2014). https://doi.org/10.1002/ajmg.a.36274

2013

Structure-Function Features of a Mycoplasma Glycolipid Synthase Derived from Structural Data Integration, Molecular Simulations, and Mutational Analysis.
J. Romero-García, C. Francisco, X. Biarnés, A. Planas.
PLOS One 8(12), e81990 (2013). http://dx.doi.org/10.1371/journal.pone.0081990

Modulation of the fibrillogenesis inhibition properties of two transthyretin ligands by halogenation.
E. Cotrina, M. Pinto, L. Bosch, M. Vilà, D. Blasi; J. Quintana, N. Centeno, G. Arsequell, A. Planas, G. Valencia.
Journal of Medicinal Chemistry 56, 9110–9121 (2013). http://dx.doi.org/10.1021/jm401061w

Formation of a covalent glycosyl-enzyme species in a retaining glycosyltransferase.
V. Rojas-Cervellera, A. Ardèvol, M. Boero, A. Planas, C. Rovira.
Chemistry European Journal 19, 14018-14023 (2013). http://dx.doi.org/10.1002/chem.201302898

Congenital hyperinsulinism: clinical and molecular analysis of a large Italian cohort.
F. Faletra, E. Athanasakis, A.a. Morgan, X. Biarnes, F. Fornasier, R. Parini, F. Furlan, A. Boiani, A. Maiorana, C. Dionisi-Vici, L. Giordano, A. Burlina, A. Ventura, P. Gasparini.
Gene 521, 160-165 (2013). https://doi.org/10.1016/j.gene.2013.03.021

Nucleation Process of a Fibril Precursor in the C-Terminal Segment of Amyloid-beta.
F. Baftizadeh, F. Pietrucci, X. Biarnes, A. Laio.
Physical Review Letters 110, 168103 (2013). https://doi.org/10.1103/PhysRevLett.110.168103

2012

An engineered E. coli strain for the production of glycoglycerolipids.
N. Mora, M. Faijes, A. Planas.
Metabolic Engineering 14, 551–559 (2012). https://doi.org/10.1016/j.ymben.2012.06.001

Thermal stabilization of an endoglucanase by cyclization.
J.F.T. van Lieshout, O. Pérez, W. Vroom, A.C.M. Geerling, S. Koutsopoulos, A. Planas, W.M. de Vos, J. van der Oost.
Applied Biochemistry and Biotechnology 167, 2039-2053 (2012). https://doi.org/10.1007/s12010-012-9674-z

Bacterial glycoglycerolipid synthases. Processive and non-processive glycosyltransferases in mycoplasma.
E. Andrés, X.Biarnés, M. Faijes, A. Planas.
Biocatalysis and Biotransformation 30, 274–287 (2012). https://doi.org/10.3109/10242422.2012.674733

Methods to evaluate the inhibition of TTR fibrillogenesis induced by small ligands.
G. Arsequell, A. Planas.
Current Medicinal Chemistry 19, 2343-2355 (2012). https://doi.org/10.2174/092986712800269281

Conformational analyses of the reaction coordinate of glycosidases.
G.J. Davies, A. Planas, C. Rovira.
Accounts of Chemical Research 45, 308-316 (2012). https://doi.org/10.1021/ar2001765

Identification of a New Mutation (L46P) in the Human NOG Gene in an Italian Patient with Symphalangism Syndrome.
E. Athanasakis, X. Biarnés, M.T. Bonati, P. Gasparini, F. Faletra.
Molecular Syndromology 3, 21-24 (2012). https://doi.org/10.1159/000337928

Multidimensional View of Amyloid Fibril Nucleation in Atomistic Detail.
F. Baftizadeh, X. Biarnés, F. Pietrucci, F. Affinito, A. Laio.
Journal of the American Chemical Society 134, 3886-3894 (2012). https://doi.org/10.1021/ja210826a

METAGUI. A VMD interface for analyzing metadynamics and molecular dynamics simulations.
X. Biarnés, F. Pietrucci, F. Marinelli, A. Laio.
Computer Physics Communications 183, 203-211 (2012). https://doi.org/10.1016/j.cpc.2011.08.020

2011

Catalytic itinerary in 1,3-1,4-β-glucanase unravelled by QM/MM metadynamics. Charge is not yet fully developed at the oxocarbenium ion-like transition state.
X. Biarnés, A. Ardèvol, J.Iglesias-Fernández, A. Planas, C. Rovira.
Journal of the American Chemical Society 133, 20301-20309 (2011). https://doi.org/10.1021/ja207113e

Expression and characterization of a Mycoplasma genitalium glycosyltransferase in membrane glycolipid biosynthesis. Potential target against mycoplasma infections.
E. Andrés, N. Martínez, A. Planas.
Journal of Biological Chemistry 286, 35367–35379 (2011). https://doi.org/10.1074/jbc.M110.214148

Drug discovery targeted at Transthyretin cardiac amyloidosis: Rational design, synthesis and biological activity of new Transthyretin amyloid inhibitors.
D. Blasi, M. Pinto, J. Nieto, G. Arsequell, G. Valencia, A. Planas, N. B. Centeno, J. Quintana.
Amyloid 18 (Suppl. 1), 55-57 (2011). https://doi.org/10.3109/13506129.2011.574354019

Ligand-binding properties of human transthyretin.
M. Pinto, D. Blasi, J. Nieto, G. Arsequell, G. Valencia, A. Planas, J. Quintana, N. B. Centeno.
Amyloid 18 (Suppl. 1), 51-54 (2011). https://doi.org/10.3109/13506129.2011.574354018

Retrospective mapping of SAR data for TTR protein in chemico-biological space using ligand efficiency indices as a guide to drug discovery strategies.
D. Blasi, G. Arsequell, G. Valencia, J. Nieto, A. Planas, M. Pinto, N.B. Centeno, C. Abad-Zapatero, J. Quintana.
Molecular Informatics 30, 161-167(2011). https://doi.org/10.1002/minf.201000157

Gene Ontology function prediction in Mollicutes using protein-protein association networks.
A. Gómez, J. Cedano, I. Amela, A. Planas, J. Piñol, E. Querol.
BMC Systems Biology 5, 49-60 (2011). https://doi.org/10.1186/1752-0509-5-49

Artificial Mixed-Linked β-Glucans Produced by Glycosynthase-Catalyzed Polymerization: Tuning Morphology and Degree of Polymerization.
X. Pérez, M. Faijes, A. Planas.
Biomacromolecules 12, 494–501 (2011). https://doi.org/10.1021/bm1013537

Thermus thermophilus glycoside hydrolase family 57 Branching Enzyme: crystal structure, mechanism of action, and products formed.
M. Palomo, T. Pijning, T. Booiman, J. Dobruchowska, J. van der Vlist, S. Kralj, A. Planas, J.P. Kamerling, B.W. Dijkstra, M.J.E.C. van der Maarel, L. Dijkhuizen, H. Leemhuis.
Journal of Biological Chemistry 286, 3520-3530 (2011). https://doi.org/10.1074/jbc.M110.179515

Reengineering specificity in 1,3-1,4-β-glucanase to accept branched xyloglucan substrates.
T. Addington, B. Calisto, M. Alfonso-Prieto, C. Rovira, I. Fita, A. Planas.
Proteins, Structure, Function &.Bioinformatics 79, 365-375 (2011). https://doi.org/10.1002/prot.22884

Molecular motions in drug design: the coming age of the metadynamics method.
X. Biarnés, S. Bongarzone, A. Vittorio-Vargiu, P. Carloni, P. Ruggerone.
Journal of Computer-Aided Molecular Design 25, 395-402 (2011). https://doi.org/10.1007/s10822-011-9415-3

2010

The conformational free-energy landscape of β-D-mannopyranose. Evidence for a 1S5 – B2,5 – 0S2 catalytic itinerary in β-mannosidases.
A. Ardèvol, X. Biarnés, A. Planas, C. Rovira.
Journal of the American Chemical Society 132, 16058-16065 (2010). https://doi.org/10.1021/ja105520h

Substrate conformational changes in glycoside hydrolase catalysis. A first-principles molecular dynamics study.
X. Biarnés, A. Ardèvol, A. Planas, C. Rovira.
Biocatalysis and Biotransformation 28, 33-40 (2010). https://doi.org/10.3109/10242420903408252

Physiological responses to folate overproduction in Lactobacillus plantarum WCFS1 913848
A. Wegkamp, A.E. Mars, M. Faijes, D. Molenaar, R.CH. de Vos, S.MJ. Klaus, A.D. Hanson, W.M. de Vos, E.J. Smid.
Microbial Cell Factories. 9, 100 (2010). http://doi.org/10.1186/1475-2859-9-100

2009

Isatin derivatives, a novel class of transthyretin fibrillogenesis inhibitors.
A. González, J. Quirante, J. Nieto, M. R. Almeida, M. J. Saraiva, A. Planas, G. Arsequell, G. Valencia.
Bioorganic & Medicinal Chemistry Letters 19, 5270-5273 (2009). https://doi.org/10.1016/j.bmcl.2009.03.004

Synthesis of an aryl 2-deoxy-β-glycosyl tetrasaccharide to probe retaining endo-glycosidase mechanism.
M. Abel, A. Segade, A. Planas.
Tetrahedron Asymmetry 20, 847-850 (2009). https://doi.org/10.1016/j.tetasy.2009.03.008

Iodine Atoms: A New Molecular Feature for the Design of Potent Transthyretin Fibrillogenesis Inhibitors.
T. Mairal, J. Nieto, M. Pinto, M. R. Almeida, L. Gales, A. Ballesteros, J. Barluenga, J. J. Pérez, J. T. Vázquez, N. B. Centeno, M. J. Saraiva, A. M. Damas, A. Planas, G. Arsequell, G. Valencia.
PLoS ONE 4(1): e4124 (2009). https://doi.org/10.1371/journal.pone.0004124

2008

Mechanism-based labelling defines the free energy change for formation of the covalent glycosyl-enzyme intermediate in a xyloglucan endo-transglycosylase.
K. Piens, R. Fauré, G. Sundqvist, M.J. Baumann, M. Saura-Valls, T.T. Teeri, S. Cottaz, A. Planas, H. Driguez, and H. Brumer.
Journal of Biological Chemistry 283, 21864 – 21872 (2008). https://doi.org/10.1074/jbc.M803057200

Active-site mapping of a Populus xyloglucan endo-transglycosylase with a library of xylogluco-oligosaccharides.
M. Saura-Valls, R. Fauré, H.Brumer, T.T. Teeri, S. Cottaz, H. Driguez, A. Planas.
Journal of Biological Chemistry 283, 21853 – 21863 (2008). https://doi.org/10.1074/jbc.M803058200

Anàlisi del procés d’elaboració del pa. Recomenacions per a millorar-lo.
M. Faijes, A. Planas.
Gremi de Flequers de la Provincia de Barcelona (2008). D.L.B.-12107/2008 (book).

Reengineering TTR amyloid inhibition properties of diflunisal.
M. Vilaró, G. Arsequell, G. Valencia, A. Ballesteros, J. Barluenga, J. Nieto, A. Planas, R. Almeida, M.J. Saraiva.
In Amyloid and Amyloidosis, CRC Press Boca Raton, USA (Eds. M.Skinner, J.L.Beck, L.H.Connors, D.C.Seldin), pp. 205-207 (2008), ISBN: 1-4200-4281-5. Link

2007

Immobilized Pichia pastoris in alginate beads for continuous culture.
P.K. Carvajal-Vallejos, A. Planas, E. Barberà.
Afinidad 64 (529), 384-389 (2007). Link

Ensayo enzimático de glicosiltransferasas mediante electroforesis capilar sin derivatización.
J. A. Linares-Pastén, A. Planas.
Afinidad 64 (529), 356-363 (2007). Link

The conformational free energy landscape of β-D-glucopyranose. Implications for substrate preactivation in β-glucoside hydrolases.
X. Biarnés, A. Ardèvol, A. Planas, C. Rovira, A. Laio, M. Parrinello.
Journal of the American Chemical Society 129, 10686-10693 (2007). https://doi.org/10.1021/ja068411o

In vitro synthesis of artificial polysaccharides by glycosidases and glycosynthases.
M. Faijes, A. Planas.
Carbohydrate Research 342, 1581-1594 (2007). https://doi.org/10.1016/j.carres.2007.06.015

Chemical rescue of α3-galactosyltransferase. Implications in the mechanism of retaining glycosyltransferases.
A. Monegal, A. Planas.
Journal of the American Chemical Society 128, 16030-16031 (2006). https://doi.org/10.1021/ja0659931

Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum.
M. Faijes, A.E. Mars, E.J. Smid.
Microbial Cell Factories 6, 27 (2007). https://doi.org/10.1186/1475-2859-6-27

2006

Acceptor-dependent regioselectivity of glycosynthase reactions by Streptomyces E383A β-glucosidase.
M. Faijes, M. Saura, Xavi Pérez, M. Conti, A. Planas.
Carbohydrate Research 341, 2055-2065 (2006). https://doi.org/10.1016/j.carres.2006.04.049

Library of xylogluco-oligosaccharides for active site mapping of xyloglucan endotransglycosylase.
R. Fauré, M. Saura-Valls, H. Brumer III, A. Planas, S. Cottaz, H. Driguez.
Journal of Organic Chemistry 71, 5151-5161(2006). https://doi.org/10.1021/jo0525682

Iodination of proteins by IPy2BF4, a new tool in protein chemistry.
G. Espuña, D. Andreu, J. Barluenga, X. Pérez, A. Planas, G. Arsequell, G. Valencia.
Biochemistry 45, 5957-5963 (2006). https://doi.org/10.1021/bi060103f

Kinetic analysis with low molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase.
M. Saura-Valls, R. Fauré, S. Ragàs, K. Piens, H. Brumer, T.T. Teeri, S. Cottaz, H. Driguez, A. Planas.
Biochemical Journal 395, 99-106 (2006). https://doi.org/10.1042/BJ20051396

Structural basis for the substrate specificity of a Bacillus 1,3-1,4-β-glucanase.
O.J. Gaiser, K. Piotukh, M.N. Ponnuswamy, A. Planas, R. Borriss, U. Heinemann.
Journal of Molecular Biology 357, 1211-1225 (2006). https://doi.org/10.1016/j.jmb.2006.01.014

Substrate distortion in the Michaelis complex of Bacillus 1,3-1,4-β-glucanase.Insight from first principles molecular dynamics simulations.
X. Biarnés, J. Nieto, A. Planas, C. Rovira.
Journal of Biological Chemistry 281, 1432-1441 (2006). https://doi.org/10.1074/jbc.M507643200

Impacto de la Biotecnología en los sectores industrial y energético.
A.Planas et al.
Informe de Prospectiva Tecnológica. Genoma España (2006). Editorial: Genoma España. Depósito legal: M-52897-2006. Link

2005

Caracterización enzimática de la β-1,3-galactosiltransferasa bovina. Validación de un ensayo radiométrico y mecanismo cinético.
A. Monegal, A. Planas.
Afinidad 62, 505-512 (2005). Link

How family 26 glycoside hydrolases orchestrate catalysis on different polysaccharides: Structure and activity of a Clostridium thermocellum lichenase, CtLic26a.
E.J. Taylor, A. Goyal, C.I.P.D. Guerreiro, J.A.M. Prates, V. Money, N. Ferry, C. Morland, A. Planas, J.A. Macdonald, R.V. Stick, H.J. Gilbert, C.M.G.A. Fontes, G.J. Davies.
Journal of Biological Chemistry 280, 32761-32767(2005). https://doi.org/10.1074/jbc.M506580200

Capillary electrophoresis method for the enzymatic assay of galactosyltransferases with post-reaction derivatization.
A. Monegal, R. Pinyol, A. Planas.
Analytical Biochemistry 346, 115-123 (2005). https://doi.org/10.1016/j.ab.2005.08.012

Kinetic assay for high throughput screening of in vitro transthyretin amyloid fibrillogenesis inhibitors.
I. Dolado, J. Nieto., M.J. Saraiva, G. Arsequell, G. Valencia, A. Planas.
Journal of Combinatorial Chemistry 7, 246-252 (2005). https://doi.org/10.1021/cc049849s

Oligosacàrids funcionals per síntesi enzimàtica. Nous enzims per noves aplicacions.
M. Faijes, A. Planas.
TECA, Tecnologia i Ciència dels Aliments 8, 5-13 (2005). https://www.raco.cat/index.php/TECA/article/view/220694

2004

Hydrolase and glycosynthase activity by endo-1,3-β-glucanase from the thermophile Pyrococcus furiosus.
J. van Lieshout, M. Faijes, J. Nieto, J. van der Oost, A. Planas.
Archaea 1, 285-292 (2004). https://doi.org/10.1155/2004/731548

The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates β1-4 and β-1,3-1,4-mixed linked glucans at a single binding site.
A.L. Carvalho, A. Goyal, J.A.M. Prates, D.N. Bolam, H.J. Gilbert, V.M.R. Pires, L.M.A. Ferreira, A. Planas, M.J. Romão, C.M.G.A. Fontes.
Journal of Biological Chemistry 279, 34785-34793 (2004). https://doi.org/10.1074/jbc.M405867200

The crystal structure of the family 6 carbohydrate-binding module from Cellvibrio mixtus endoglucanase 5A in complex with oligosaccharides reveals two distinct binding sites with different ligand specificities.
V. M. R. Pires, J. Henshaw, J. A. M. Prates, D. Bolam, L. M. A. Ferreira, C. M. G. A. Fontes, B. Henrissat, A. Planas, H.J. Gilbert, M. Czjzek.
Journal of Biological Chemistry 279, 21560-21568 (2004). https://doi.org/10.1074/jbc.M401599200

Selective binding to transthyretin and tetramer stabilization in serum from patients with familial amyloidotic polyneuropathy by an iodinated diflunisal derivative.
M. R. Almeida, B. Macedo, I. Cardoso, I. Alves, G. Valencia, G. Arsequell, A. Planas, M. J. Saraiva.
Biochemical Journal,381, 351-356 (2004). https://doi.org/10.1042/BJ20040011

In vitro synthesis of a crystalline (1 3, 1 4)-beta-d-glucan by a mutated (1 3,1 4)-beta-d-glucanase from Bacillus.
M. Faijes, T. Imai, V. Bulone, A. Planas.
Biochemical Journal 380, 635-641 (2004). https://doi.org/10.1042/bj20040145

Development of a solid phase kinetic assay for determination of enzyme activities during composting.
C. Peláez, A. Mejía, A. Planas.
Process Biochemistry 39, 971-975 (2004). https://doi.org/10.1016/S0032-9592(03)00208-5

Identification of new diflunisal derivatives as potent in vitro transthyretin fibril inhibitors.
T. Mairal, G. Arsequell, G. Valencia, I. Dolado, J. Nieto, A. Planas, J. Barluenga, A. Ballesteros, R. Almeida, M.J. Saraiva.
In Amyloid and Amyloidosis, CRC Press LLC, USA (Eds. G. Grateau, R.A. Kyle and M. Skinner) pp. 505-507 (2004), ISBN:0-8493-3534-5.

Effects of a new diflunisal derivative on transthyretin binding and stabilization in serum from FAP patiens.
M.R. Almeida, B. Macedo, I. Cardoso, G. Valencia, G. Arsequell, A. Planas, M.J. Saraiva.
Amyloid and Amyloidosis, CRC Press LLC, USA (Eds. G. Grateau, R.A. Kyle and M. Skinner) pp. 497-499 (2004), ISBN:0-8493-3534-5.

2003

Bioinformatic resources in Internet.
J. Linares, A. Planas.
Afinidad 507, 415-418 (2003).

Unusual role of the 2-OH group of oligosaccharide substrates in the mechanism of Bacillus 1,3-1,4-β-glucanase.
A. Planas, J. Nieto, M. Abel, A. Segade.
Biocatalysis and Biotransformation 21, 223-231 (2003). https://doi.org/10.1080/10242420310001618500

Glycosynthase activity of Bacillus licheniformis 1,3-1,4-β-glucanase mutants: specificity, kinetics, and mechanism.
M. Faijes, X. Pérez, O. Pérez, A. Planas.
Biochemistry 42, 13304-13318 (2003). https://doi.org/10.1021/bi030131n

Pre-steady state kinetics of Bacillus licheniformis 1,3-1,4-beta-glucanase. Evidence for a regulatory binding site.
M. Abel, K. Iversen, A. Planas, U. Christensen.
Biochemical Journal 371, 997-1003 (2003). https://doi.org/10.1042/bj20021504

Mechanism and engineering of bacterial 1,3-1,4-β-glucanases: from glucan hydrolase to glycosynthases in enzymatic oligosaccharide synthesis.
A. Planas, M. Faijes, M. Abel.
Journal of Applied Glycosciences 50, 245-251 (2003). https://doi.org/10.5458/jag.50.245

2002

Glycosidases and glycosynthases in enzymatic synthesis of oligosaccharides. An overview.
A. Planas, M. Faijes.
Afinidad 500, 295-313 (2002). Link

Specificity studies of Bacillus 1,3-1,4-β-glucanases and application to glycosynthase-catalyzed transglycosylation.
J. Fairweather, M. Faijes, H. Driguez, A. Planas.
ChemBioChem 3, 866-873 (2002). https://doi.org/10.1002/1439-7633(20020902)3:9<866::AID-CBIC866>3.0.CO;2-R

2001

Oligosaccharide synthesis by coupled endo-glycosynthases of different specificity: A straightforward preparation of two mixed-linkage hexasaccharide substrates of 1,3-1,4-β-glucanases.
M. Faijes, J. Fairweather, H. Driguez, A. Planas.
Chemistry A European Journal 7, 4651-4655 (2001). https://doi.org/10.1002/1521-3765(20011105)7:21<4651::AID-CHEM4651>3.0.CO;2-6

Presteady-state kinetics of Bacillus 1,3–1,4-β-glucanase: binding and hydrolysis of a 4-methylumbelliferyl trisaccharide substrate.
M. Abel, A. Planas, U. Christensen.
Biochemical Journal 357, 195-202 (2001). https://doi.org/10.1042/bj3570195

Composting of cattle and agricultural waste: variables and processes.
A. Planas, C. Peláez.
Afinidad 58, 93-104 (2001). Link

Isolation and characterization of a thermostable endo-.beta.-glucanase active on 1,3-1,4-β-D-glucans from the aerobic fungus Talaromyces emersonii CBS 814.70.
Murray, P.G., Grassick, A., Laffey, C.D., Cuffe, M.M., Higgins, T., Savage, A.V., Planas, A., Tuohy, M.G.
Enzyme and Microbial Technology 29, 90-98 (2001). https://doi.org/10.1016/S0141-0229(01)00354-4

Mechanism of the family 1 β-glucosidase from Streptomyces sp: catalytic residues and kinetic studies.
M. Vallmitjana, M. Ferrer-Navarro, R. Planell, M. Abel, C. Ausin, E. Querol, A. Planas, J.A. Pérez-Pons.
Biochemistry 40, 5975-5982 (2001). https://doi.org/10.1021/bi002947j

Long-lived glycosyl-enzyme intermediate mimic produced by formate re-activation of a mutant endoglucanase lacking its catalytic nucleophile.
J.LL. Viladot, F. Canals, X. Batllori, A. Planas,
Biochemical Journal 355, 79–86 (2001). https://doi.org/10.1042/bj3550079

2000

Bacterial 1,3-1,4-β-glucanases: structure, function and protein engineering.
A. Planas.
Biochimica et Biophysica Acta 1543, 361-382 (2000). https://doi.org/10.1016/S0167-4838(00)00231-4

Fundación COTEC para la innovación tecnológica: Productos Alimentarios Intermedios (PAI).
(R. Xalabarder, N .Khayyat, Eds.).
Documentos COTEC sobre Oportunidades Tecnológicas, Juny 2000, Depósito legal M.26.463-2000.  http://informecotec.es/media/N16_PAI.pdf

1999

Protein−Carbohydrate Interactions Defining Substrate Specificity in Bacillus 1,3-1,4-β-D-Glucan 4-Glucanohydrolases as Dissected by Mutational Analysis.
K. Piotukh, V. Serra, R. Borriss, A. Planas.
Biochemistry 38, 16092-16104 (1999). https://doi.org/10.1021/bi991690q

Consequences of removing the catalytic nucleophile in Bacillus 1,3-1,4-β-glucanases: synthase activity and novel properties by chemical rescue.
A. Planas, J.L. Viladot, M. Faijes.
In Carbohydrate Bioengineering (G. Hilbert, G.J. Davies, B. Henrissat, and S. Svensson, Eds.), The Royal Society of Chemistry, Cambridge, 292-301 (1999). Link

Degradación enzimática de β-glucanos. Enzimología de 1,3-1,4-β-glucanasas, nuevos ensayos y variantes enzimáticas.
A. Planas, E. Querol.
Cerveza y Malta 141, 11-22 (1999). Link

1998

From β‐glucanase to β‐glucansynthase: glycosyl transfer to α‐glycosyl fluorides catalyzed by a mutant endoglucanase lacking its catalytic nucleophile.
C. Malet, A. Planas.
FEBS Letters 440, 208-212 (1998). https://doi.org/10.1016/S0014-5793(98)01448-3

Chemoenzymatic synthesis of 1,3-1,4-β-D-glucooligosaccharides for subsite mapping of 1,3-1,4-β-D-glucan endohydrolases.
M. Hrmova, G.B. Fincher, J.L. Viladot, A. Planas, H. Driguez.
Journal of the Chemical Society, Perkin Transactions I, 3571-3576 (1998). https://doi.org/10.1039/A804711A

Expeditious synthesis of a new hexasaccharide using transglycosylation reaction catalyzed by Bacillus (1→3),(1→4)-β-d-glucan 4-glucanohydrolase.
J.L. Viladot, B. Stone, H.Driguez, A. Planas.
Carbohydrate Research 311, 95-99 (1998). https://doi.org/10.1016/S0008-6215(98)00212-2

Protein engineering for thermostabilisation of proteins: some theoretical rules and application to a ß-glucanase.
E. Querol, J. Pons, J. Cedano, M. Vallmitjana, F. García, C. Bonet, J.A. Pérez-Pons, A. Planas. A. Mozo-Villarias.
Progres in Biotechnology 15, 303-310 (1998). https://doi.org/10.1016/S0921-0423(98)80045-2

Probing the mechanism of Bacillus 1,3-1,4-β-D-glucan 4-glucanohydrolases by chemical rescue of inactive mutants at catalytically essential residues.
J.Ll. Viladot, E. de Ramón, O. Durany, A. Planas.
Biochemistry 37, 11332-11342 (1998).  https://doi.org/10.1021/bi980586q

Synthesis of aryl 3-O-β-cellobiosyl-β-D-glucopyranosides for reactivity studies of 1,3-1,4-β-glucanases.
A. Planas, M. Abel, O. Millet, J. Palasí, C. Pallarés, J.Ll. Viladot.
Carbohydrate Research 310, 53-64 (1998). https://doi.org/10.1016/S0008-6215(98)00175-X

Mutational analysis of specificity and catalysis in Bacillus 1,3-1,4 β-glucanases.
A. Planas.
Carbohydrases from Trichoderma reesei and other microorganisms (M. Claeyssens, W. Nerinckx, K. Piens, eds), The Royal Society of Chemistry, pp. 21-38 (1998).

1997

Mechanism of Bacillus 1,3-1,4-β-d-Glucan 4-Glucanohydrolases:  Kinetics and pH Studies with 4-Methylumbelliferyl β-d-Glucan Oligosaccharides.
C. Malet, A. Planas.
Biochemistry 36, 13838-13848 (1997). https://doi.org/10.1021/bi9711341

Transglycosylation activity of Bacillus 1,3-1,4-β-D-glucan 4-glucanohydrolases. Enzymic synthesis of alternate 1,3-1,4-β-D-glucooligosaccharides.
J.Ll. Viladot, V. Moreau, A. Planas, H. Driguez.
Journal of The Chemical Society Perkin Trans. I, 2383-2387 (1997). https://doi.org/10.1039/A701431G

Mutational analysis of the major loop of Bacillus 1,3-1,4-β-D-glucan 4-glucanohydrolases: effects on protein stability and substrate binding.
J. Pons, E. Querol, A. Planas.
Journal of Biological Chemistry 272, 13006-13012 (1997). https://doi.org/10.1074/jbc.272.20.13006

PCR site-directed mutagenesis using Pyrococcus sp. GB-D polymerase coupled to a rapid screening procedure: application to a β-glucanase gene.
J. Pons, A. Planas, M. Juncosa, E. Querol.
PCR cloning protocols: From molecular cloning to genetic engineering. Methods in Molecular Biology, Vol. 67 (B.A. White, Ed.) Humana Press, pp. 209-218 (1997). https://doi.org/10.1385/0-89603-483-6:209

El origen de la vida.
A. Planas.
Afinidad 54, 426 (1997).

1996

Design and chemoenzymatic synthesis of thiooligosaccharide inhibitors of 1,3:1,4-β-D-glucanases.
V. Moreau, J.Ll. Viladot, E. Samain, A. Planas, H. Driguez.
Biorganic and Medicinal Chemistry 4, 1849-1855 (1996). https://doi.org/10.1016/S0968-0896(96)00166-6

A specific chromophoric substrate for activity assays of 1,3-1,4-β-D-glucan 4-glucanohydrolases.
C. Malet, J. Vallés, J. Bou, A. Planas.
Journal of Biotechnology 48, 209-219 (1996). https://doi.org/10.1016/0168-1656(96)01511-8

1995

Contribution of subsites to catalysis and specificity in the extended binding cleft of Bacillus 1,3-1,4-β-D-glucan 4-glucanohydrolase.
A. Planas, C. Malet.
Carbohydrate Bioengineering (S.B. Petersen, B. Svensson, S. Pedersen, Eds.), Elsevier Science, Amsterdam, pp. 85-95 (1995).
Progress in Biotechnology 10, 85-95 (1995). https://doi.org/10.1016/S0921-0423(06)80096-1

Crystal structure of Bacillus licheniformis 1,3-1,4-β-D-glucan 4-glucanohydrolase at 1.8 Å resolution.
M. Hahn, J. Pons, A. Planas, E. Querol, U. Heinemann.
FEBS Letters 374, 221-224 (1995). https://doi.org/10.1016/0014-5793(95)01111-Q

Contribution of a disulfide bridge to the stability of 1,3-1,4-β-D-glucan 4-glucanohydrolase from Bacillus licheniformis.
J. Pons, A. Planas, E. Querol.
Protein Engineering 8, 939-945 (1995). https://doi.org/10.1093/protein/8.9.939

Synthesis of 4-methylumbelliferyl-β-D-glucan oligosaccharides as specific chromophoric substrates of (13),(14)-β-D-glucan 4-glucanohydrolases.
C. Malet, J.L. Viladot, A. Ochoa, C. Brosa, A. Planas.
Carbohydrate Research 274, 285-301 (1995). https://doi.org/10.1016/0008-6215(95)00102-Y

Fuente de energía vegetal: El Biodiesel es un complemento y una alternativa al gasóleo.
C. Brosa, A. Planas, J. Árboles.
La Vanguardia. Sección Ciencia y Tecnología (18 de Febrero 1995), 8, (article in newspaper).  Link

1994

Identification of active site carboxylic residues in Bacillus licheniformis endo-1,3-1,4-β-D-glucan 4-glucanohydrolase by site-directed mutagenesis.
M. Juncosa, J. Pons, T. Dot, E. Querol, A. Planas.
Journal of Biological Chemistry 269, 14530-14535 (1994). https://doi.org/10.1016/S0021-9258(17)36655-3

The conformation of the tri- and tetra-saccharide produced in the hydrolysis of barley glucan with the enzyme endo-1,3-1,4-β-glucan 4-glucanohydrolase from Bacillus licheniformis.
M. Bernabé, J. Jiménez-Barbero, A. Planas.
Journal of Carbohydrate Chemistry 13, 799-817 (1994). https://doi.org/10.1080/07328309408011681

Improved efficiency in site directed mutagenesis by PCR using Pyrococcus sp. GB-polymerase.
M. Juncosa, J. Pons, A. Planas, E. Querol.
Biotechniques 16, 820-821 (1994). https://pubmed.ncbi.nlm.nih.gov/8068335/

1993

Stereochemical course and structure of the products of the enzymic action of endo-1,3-1,4-β-D-glucan 4-glucanohydrolase from Bacillus licheniformis.
C. Malet, J. Jiménez-Barbero, M. Bernabé, C. Brosa, A. Planas.
Biochemical Journal 269, 753-758 (1993). https://doi.org/10.1042/bj2960753

1992

Essential catalytic role of Glu134 in endo-β-1,3-1,4-D-glucan 4-glucanohydrolase from Bacillus licheniformis as determined by site-directed mutagenesis.
A. Planas, M. Juncosa, J. Lloberas, E. Querol.
FEBS Letters 308, 141-145 (1992). https://doi.org/10.1016/0014-5793(92)81262-K

Studies on Bacillus licheniformis endo-β-1,3-1,4-D-glucanase: characterization and kinetic analysis.
A. Planas, M. Juncosa, A. Cayetano, E. Querol.
Applied Microbiology and Biotechnology 37, 583-589 (1992). https://doi.org/10.1007/BF00240730

La ingeniería de proteínas(II). Modificación de las propiedades de proteínas naturales.
A. Planas.
Industria Farmaceutica 7 (4), 41-50 (1992). 

La ingeniería de proteínas(I). Objetivos, técnicas y análisis estructural/funcional.
A. Planas.
Industria Farmaceutica 7 (3), 45-50 (1992). 

Prediction and Fourier transform infrared spectroscopy estimation of the secondary structure of a Bacillus licheniformis endo-β-1,3-1,4-D-glucanase.
E. Querol, E. Padrós, M. Juncosa, A. Planas, J. Lloberas.
Biochemical and Biophysical Research Communication 184, 612-617 (1992). https://doi.org/10.1016/0006-291X(92)90633-V

Contribution to catalysis and stability of the five cysteines in Escherichia coli aspartate aminotransferase. Preparation and properties of a cysteine-free enzyme.
L.M. Gloss, A. Planas, J.F. Kirsch.
Biochemistry 31, 32-39 (1992).  https://doi.org/10.1021/bi00116a007

1991

Photo-oxygenation of styrenic estrogens: structural analysis of 8,9-didehydro, 6,7-didehydro and 9,11-didehydroestrone derivatives and their reactivity towards singlet oxygen.
C. Malet, A. Planas, C. Brosa.
Helvetica Chimica Acta 74, 1412-1424 (1991). https://doi.org/10.1002/hlca.19910740705

Reengineering the catalytic lysine of aspartate aminotransferase by chemical elaboration of a genetically introduced cysteine.
A. Planas, J.F. Kirsch.
Biochemistry 30, 8268-8276 (1991). https://doi.org/10.1021/bi00247a023

1990

Sequential protection-modification method for selective sulfhydril group derivatization in proteins having more than one cysteine.
A. Planas, J.F. Kirsch.
Protein Engineering 3, 625-628 (1990). https://doi.org/10.1093/protein/3.7.625

1989

Synthesis of 11-oxaestrogens via dye-sensitized photo-oxygenation of a 9(11)-didehydroestrone derivative.
A. Planas, N. Sala, J.-J. Bonet.
Helvetica Chimica Acta 72, 725-730 (1989). https://doi.org/10.1002/hlca.19890720412

Photo-oxygenation of styrenic estrogens: product characterization and kinetics of the dye-sensitized photo-oxygenation of 9, 11-didehydroestrone derivatives.
A. Planas, P. Lupón, M. Cascalló, J.-J. Bonet.
Helvetica Chimica Acta 72, 715-724 (1989). https://doi.org/10.1002/hlca.19890720411

1988

Photooxidation of drimenyl acetate. The preparation of allylic alcohols with potential application in natural product synthesis.
M. Cortés, J. López, A. Planas, J.-J. Bonet.
Boletín de la Sociedad Chilena de Química 33, 123-128 (1988).

1987

Spiran isolation in the dienone-phenol rearrangement of steroidal p-quinols.
A. Planas, J. Tomás, J.-J. Bonet.
Tetrahedron Letters 28, 471-474 (1987). https://doi.org/10.1016/S0040-4039(00)95759-9

1985

Regiospecific base-catalysed pynacol-type rearrangement of cyclic -hydroxy toluene sulfonates: ring contraction vs. alkyl migration in sesquiterpene derivatives.
A. Planas, M. Cortes, J.-J. Bonet.
Afinidad 42, 375-376 (1985).